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An algorithm for kinetic simulation of electron and ion plasmas is introduced that combines both im-
plicit and perturbative methods to deal efficiently with disparate time scales and signal-to-noise issues as-
sociated with particle discreteness. The algorithm is introduced for an electrostatic model in a strong
magnetic field with gyrokinetic ions and drift-kinetic electrons. Some of the numerical dispersion prop-
erties are analyzed and confirmed in test simulations. Two-dimensional applications of the algorithm to
drift-wave instabilities excited either by an ion temperature gradient (ion-temperature-gradient instabili-
ty) or by electron inverse Landau damping in the presence of a density gradient (collisionless drift insta-
bility) are presented that illustrate the usefulness of the method. Clear gains in resolution and computa-

tional efficiency over previous methods are achieved.

PACS number(s): 52.65.—y, 52.35.Qz, 02.70.—c
I. INTRODUCTION

Because plasma phenomena in laboratory and space
plasmas exhibit such a wide range of disparate time
scales, the field of plasma simulation has been rich in the
invention of techniques that take advantage of disparate
time scales to achieve an improvement in computational
efficiency [1]. This work presents progress in the devel-
opment of efficient algorithms for the kinetic simulation
of electron and ion plasmas. The particular methods ap-
plied here represent a combination of multiple-time-scale
techniques that have been found successful when used
separately.

A more specific goal of this work is the efficient simula-
tion of electrostatic drift-wave turbulence in a strongly
magnetized plasma excited by instabilities in which both
electron and ion kinetic effects are potentially important.
We specialize further to a class of drift-wave instabilities
that are important in the core of tokamaks [2] for which
the mode frequency w is much less than the ion cyclotron
frequency (1;, o <<(};, the wave number parallel to the
magnetic field B is much smaller than that perpendicular
to B, the product of the ion Larmor radius p; and the
perpendicular wave number k, satisfies k,p; <O(1), and
the electron Larmor radius is much smaller than any of
the lengths of interest.

Our algorithm combines the features of the following
kinetic algorithms. To simulate drift waves with o <<},
while retaining ion Larmor radius effects, we adopt Lee’s
gyrokinetic description of the ions [3]. We model the
electrons with drift-kinetic equations of motion (EXB
motion across the magnetic field and full parallel dynam-
ics). We assign a time step to the electrons that is an in-
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teger submultiple of the ion time step so that the elec-
trons can be subcycled [4] and orbit averaged [5] to ac-
commodate their transit along the magnetic field, which
is faster than the ions. To model tokamak core tur-
bulence in plasmas that are weakly perturbed from a
Maxwellian, we use a partially linearized (§f) representa-
tion for both electrons and ions [6,7]. For small pertur-
bations, the §f method achieves a large reduction in the
number of particles needed for kinetic simulation. Final-
ly, we introduce implicit-moment equations as an in-
termediary between the electrons and Poisson’s equation
to determine the self-consistent electric fields so that the
field solution is implicit and suppresses unwanted high-
frequency modes and thermal noise [8—10]. The stability
of the resulting algorithm is relatively robust compared
to that experienced with semi-implicit methods in fully
nonlinear simulations with gyrokinetic ions and drift-
kinetic electrons [11].

The combination of implicit-moment equations and §f
methods was introduced in earlier work by Barnes and
Nebel [12], which accommodated the evolution of the
background density, momentum flux, and temperature in
fluid equations with the constraints that the correspond-
ing first three moments of the perturbed velocity distribu-
tion vanish. Barnes has called this the quiet-implicit
particle-in-cell method [12]. The quiet-implicit work
differs from the work described here in that in this work
the background velocity distribution is a fixed, nondrift-
ing Maxwellian; the first three moments of the perturbed
distribution function are not constrained to vanish, and in
the applications to two-dimensional drift-wave tur-
bulence presented, the ions are gyrokinetic and the elec-
trons are drift kinetic.

This paper is organized as follows. In Sec. II is
presented a detailed description of our implicit-moment
8f algorithm and some of its attributes. We present
several test cases in Sec. III, including simulations of the
cold-electron w, mode (the highest frequency mode sup-
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ported by our model) with an analysis of its numerical
dispersion and stability for finite time step, the warm-
electron w;, mode with electron Landau damping, the
ion-temperature-gradient (ITG) instability, and the
collisionless-drift instability destabilized by inverse elec-
tron Landau damping in the presence of a density gra-
dient. Concluding remarks are presented in Sec. IV. The
algorithm performance is quite good. The §f representa-
tion of both electrons and ions had excellent signal-to-
noise characteristics with modest statistical requirements
for the examples considered here. Because of the implicit
time integration, limitations on time step were set by ac-
curacy considerations rather than by the numerical sta-
bility of the ©, mode.

II. IMPLICIT-MOMENT & f ALGORITHM

The electrostatic implicit-moment §f algorithm in a
magnetically sheared slab consists of the following ele-
ments. The ions satisfy the reduced Vlasov-Poisson equa-
tions [3] based on the following standard gyrokinetic or-
dering:
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where p,=v,/Q;, Q;=¢,B/mc, v;=\'T;/m;, q;, m;,
and T; are, respectively, the ion charge, mass, and tem-
perature, c is the speed of light, B is the magnetic field
strength, ¢ is the electrostatic potential,  is the frequen-
cy of the perturbation, L is a characteristic perpendicular
equilibrium scale length of the system, and L, is the
characteristic parallel wavelength of the perturbation.

The electrostatic gyrokinetic Vlasov equation for a
plasma in a uniform magnetic field is [13,14]
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where k=—VInF,,, F), is an equilibrium Maxwellian
distribution function,
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R=x—0p, pEleG, p is a unit vector in the direction of
P> X is the particle position, v, is the perpendicular veloci-
ty, 8/ (R,u,v,,1) is the gyroaveraged perturbed distribu-
tion function, u=v? /2, and C(F) is a collision operator.
The electrostatic potential ¢ is given by the gyrokinetic
Poisson equation which, for a single ion species i, is

vip— T o yrem—n,), (1c)
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and where 7=T, /T;, p, =c, /Q;, ¢, _\/T /m;, k| is the

perpendicular wave number, kD_\/ T,/4mnye? is the
electron Debye length, and n, is the background ion
number density. The angle integrations of Egs. (1b) and
(le) are replaced by averages over four points on a ring,
combined with a charge-deposition or field-interpretation
calculations involving spatial weighting functions [3].

The term on the right-hand side of Eq. (1a) containing
k represents the radial EXB advection from an equilibri-
um with gradients in the radial direction. In the presence
of density and temperature gradients, for example,

=k, {1+n(v?/2v}—3/2)}, where n=(d InT,/d Inn,)
and «, represents the density gradient. Here, 9d/0x
represents a derivative in the direction of the equilibrium
gradients and 98/3y represents a derivative in the direc-
tion perpendicular to the magnetic field and the equilibri-
um gradients. In slab geometry, the magnetic field has its
principal component in the z direction with amplitude B,
and has a small component in the y direction. With no
shear B,=const and with shear B, =B (x —x,)/L;
where L, is the magnetic shear length.

The term ‘“‘partially linearized” denotes the fact that
there is no parallel acceleration nonlinearity in Eq. (1a).
This fact is used in the partially linearized particle simu-
lation method by recognizing that the characteristics of
Eq. (1a) preserve any spatially uniform particle distribu-
tion. In addition, we employ a linearized multiscale
method so that the effects of density and temperature
nonuniformity appear only through x on the right-hand
side of Eq. (la) and similarly for the electrons. The
k,=0 components of ¢ are suppressed. A particle
method is then introduced to solve Eq. (1a):

5f= Ew S(R—R;)8(v,—v;)8(n—pu;) , 2)

where R; and v; evolve according to the characteristic
equations of Eq. (1a). In the absence of collisions, if the
simulation particles j are loaded as a uniform Maxwellian
then the source terms on the right-hand side of Eq. (1a)
are correctly taken into account if w; evolves according

to

along the characteristics. In our implementation, a
second-order-accurate predictor-corrector time integra-
tion of the ion equations of motion is used with a time
step At;. A four-point gyroaveraged ion charge deposi-
tion is computed on both predictor and corrector steps.

The partially linearized method is a special case of the
more general “8f method,” which allows for different
choices of particle loading, for the inclusion of nonlinear-
ities such as the parallel acceleration nonlinearity that be-
come important when §f /F,, <<1 no longer holds for ar-
bitrary analytically described sources [6], and for
compressibility in the phase-space characteristics [15]. A
generalization of the partially linearized method to in-
clude the parallel nonlinearity has also been given by
Parker and Lee [16].

The electrons satisfy a drift-kinetic Vlasov equation



2710

that can be obtained from Eq. (1a) and Eq. (2) by replac-
ing ion quantities with electron quantities and taking the
limit of zero electron Larmor radius. No gyroaveraging
is required in computing forces on the electrons (comput-
ed at the electron gyrocenter) or in depositing their
charge density or any other moment on the spatial grid.
The electron particle motion is calculated basically using
the same predictor-corrector algorithm as the ions but
with a time step Az, that is a submultiple of the ion time
step. A sequence of electron advances is calculated over
a number of electron time steps adding up to the ion time
step. The self-consistent electric field is updated on the
ion time step. The motivation for subcycling [4] the elec-
tron advance is that with a realistic ion-to-electron mass

J
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ratio, the parallel electron transit motion is typically
much faster than that of the ions because v, >>v; where
v, =V'T,/m, and v;=V'T,/m;.

At this point, the Poisson equation (1c) could be solved
using an explicit electron charge density n, computed
synchronously with the gyroaveraged ion charge density
ii;. However, we will introduce implicit-moment equa-
tions for the electrons in order to remove undesirable
high-frequency modes, reduce the thermal noise associat-
ed with these high-frequency modes, and ensure numeri-
cal stability. The implicit-moment equations for the per-
turbed electron quantities are computed from the partial-
ly linearized drift-kinetic Vlasov equation:

Le 0 1

=0 .
Ly, 2v, 2 ®)

In finite-difference form for the time derivatives, the moment equations for the perturbed electron moments derived

from Eq. (3) are
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where n, is the electron number density, j, is the elec-
tron parallel current density per unit charge, (i.e., the
parallel flux density, vgxp is the EXB velocity at the
electron gyrocenter, v,,=(p, /L, )v,, v,; is the electron-
ion collision rate, p,| = ( vfﬂ ) is the parallel pressure mo-
ment computed on the electron velocity distribution
function, j, is the electron parallel flux density, j; is the
corresponding ion parallel flux density that must be com-
puted if v,;50, and €,,€,,€; are centering parameters
(0=<¢; =1). The superscripts indicate electron time levels
with the % denoting time level n on the predictor pass
and the predicted value at time level n +1 on the correc-
tor pass in advancing quantities from time nAz; to time
(n+1)At;. The %% superscript denotes evaluation at
time level #n on the predictor pass and the average of
values at time levels n and n +1 on the corrector pass.
The moment equations are bound to the particle elec-
trons by setting the number and flux densities n;" and j /|
in Eqgs. (4) and (5) equal to the corresponding particle mo-
ments accumulated on the spatial mesh. The electron
parallel pressure moment is an orbit-averaged moment
[S] computed from the simple average over the time in-
terval nAt; to (n +1)A¢; of the parallel electron pressure
moment per unit mass accumulated at each Az,. The
electron particle equations of motion are advanced in a
predictor step from nAt; to (n +1)At; using the electric
and magnetic fields at nA¢; interpolated to the electron
trajectories computed with Az,. The ions are advanced in

(1—€)¢"]—(vpxp-Vin)**, @
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f

one big predictor step from nAt; to (n+1)At;, and the
gyroaveraged ion moments are computed before solving
for the predicted fields at (n +1)A¢;. On the corrector
pass, the electrons are again advanced from nAt; to
(n+1)At;, but ¢* =€;0" "'+ (1—¢;)¢" is used to calcu-
late forces and drifts. To have the electron fluid and par-
ticle motion synchronized as much as possible, we usually
set €;=¢,. The entire scheme is accurate to O(At}) if
€,=€,=1/2.

Equations (4) and (5) are a linear system of equations

for n? 1 and j;'“ﬂ that is solved exactly and whose result
for n?*! is then substituted into Eq. (1c) to determine

¢" 1. This renders the Poisson equation implicit because

n ! depends linearly on ¢" "', It is important to note
that in an electromagnetic model, both ¢ and 4, would
contribute to E, in the equations of motion and on the
right-hand side of Eq. (5), and the expression for j,
would be substituted into Ampere’s equation. Ampere’s
and Poisson’s equations would provide a coupled linear
system for ¢ and 4 [17].

The solution of the implicit gyrokinetic Poisson equa-
tion in a magnetically sheared domain requires some spe-
cial measures. For applications to tokamak core tur-
bulence a)ﬁ,- /Q2>>1 and the vacuum polarization is negli-
gible. Here, o, is the ion plasma frequency and (), is the
ion cyclotron frequency. Poisson’s equation becomes a
statement of quasineutrality and takes the form



53 IMPLICIT-MOMENT, PARTIALLY LINEARIZED PARTICLE. ..

w? 1—Ty(b)
o —’;*—-Fwa,eAtizkﬁ(x) $(k,,x)=S(k,,x) ,

(6)

where b =k?2p?, T'o(b)=I,(b)exp(—b), I, is the modified
Bessel function, C=¢,€,/(1+¢€,6,kfv7At?), and k=k}
—9?/3x2. The Poisson equation (6) can be conveniently
solved with a Padé approximation: 1—T(b)=b /(1
+b), a Fourier transform in y, and finite differencing in x
leading to a tridiagonal matrix inversion. With
b=pi(k}—3*/3x*) and C'=C(Q}/w})o}At}, Eq. (6)
becomes

2 17,2 — &’2
(kT +(1+b)C'k | (x)]d(k,,x)=—5(1+b)S(k,,x) .

pi
(7)

We formally invert the operator on the left-hand side
of Eq. (7), collect the 8?/dx? terms, and perform a long
division to remove d%/3dx? from the numerator of the re-
sulting formal solution. The result is that the electrostat-
ic potential satisfying Poisson’s equation is given by

L2

— 5 (8)
1+C'pik}

¢(ky’x )=p12¢2_

where k =k, (x —x()/L, k; vanishes at x,, L, is the
magnetic shear length in X, ¢2(ky,x)=(9,?/
a)f,,- )S(k,,x)/(1 +C’p?kﬁ ), and 1 satisfies

Lk, x)=1v,(k,,x) ,
k4 (1+kJp})C'k T (x)
1+C'piki(x)
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which requires the inversion of a tridiagonal matrix equa-
tion with ,, ¥;, and ¢ sharing the same boundary condi-
tions in x. One then obtains ¢(x,y) by computing the in-
verse Fourier transform from ¢(k,,x). Simple periodic
boundary conditions in x and y are used for simulations
in an unsheared magnetic field with B, =const. For B, a
function of x, a bounded simulation model is used with
¢=0 at the boundaries in x, and periodic boundary con-
ditions are used in y.

This implicit-moment §f algorithm has the following
attributes. The implicitness stabilizes and damps w, os-
cillations at large time step, where w? =(k,/
k, )2(m; /m,)Q2. The w, mode derives from a balance be-
tween the ion polarization charge density perturbation
and the electron charge density perturbation associated
with the parallel electron response [3]. The &f represen-
tation reduces the statistical requirements by O(8f /F,,)?
over conventional particle simulation methods that
represent the entire distribution function with particles
[6,7]. Subcycling the electrons allows the use of time
steps At; and At¢, tailored to give good resolution of the
particle trajectories while accommodating a realistic mass
ratio more efficiently than in the case where the smaller
At, is used for both species. Implicitness in the fluid elec-
tron pressure in Eq. (5) relaxes a time-step constraint as-
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sociated with the calculation of the electron pressure,
(B, /By At; /Ay <1, as pointed out by Denavit [8].
Orbit-averaging time centers and smooths the electron
pressure accumulation. We expect that the combination
of these attributes should make simulations with kinetic
electrons and ions more efficient and quieter than tradi-
tional particle methods. The test cases presented in the
next section were useful in confirming that correct solu-
tions were obtained and demonstrated that this new algo-
rithm can lead to improvements in noise reduction and
efficiency.

III. SIMULATION TEST CASES

A. Cold-plasma w; mode

The first test of this algorithm is to assess the disper-
sion of the w;, mode for a finite time step in a cold plas-
ma. For a cold uniform plasma and fully implicit
differencing, (€, =€,=¢€;=1), the linearized electron fluid
equations and particle equations of motion can be solved
together with the gyrokinetic Poisson’s equations as a
linear algebraic system. For this simple case, we consider
the limit of kAx <<1 but retain finite-time-step effects.
For o ~w;, >>kv; and k| <<k, the parallel ion response
is negligible compared to the parallel electron response
and the ion polarization response. We introduce
A=exp(—iwAt;) and obtain a dispersion relation from
the characteristic equation for the linear system:

+1—Z =0, (10)

3
1—=
(04 )

2_
AS—2A 4

where a=w?}At?/(1+wiAt?), N=At; /At,, and we have
dropped terms of O(1/N), which arise from the sum of
the subcycled electron displacements leading to the per-
turbed electron number density at the end of the ion time
step interval, i.e., Y ;j=N(N+1)/2=N?/2. On in-
cluding the 1/N corrections, we obtain |A]?=1—a/2*%,
where 1/2*=(1+1/N)/2, which is stable (|A[<1) for
all values of w?At? because 0<a=<1. For wiAt?<<1,
Rew==*w,. The amplification factor for the w, mode
asymptotes to |A|2—1—1/2* as w}At?— . Simulation
results are shown in Fig. 1 for m;/m,=1837,
At; /At, =35, 16Ax X 16Ay, B, /B,=0.01, 128X 128 parti-
cles of each species, cold plasma, and k,Ay =0.4. The
solutions for RewAt; and |A|? in Fig. 1 determined by Eq.
(10) agree quite well with the simulation results. At the
largest values of w, At;, the corrections due to finite 1/N
are easier to observe.

We have also solved the linear dispersion relation for
the cold w, modes with €;=¢€,=€;=1, i.e., a centered
implicit time integration. We obtain the following
dispersion relation for A=exp( —iwAt;):

MHA(—242a+a/2*)+A(1—a)+a(1—1/2%)=0,
(11)

where a has been redefined as a=6%/2/(1+6%/2). We
have made a limited study of the solutions of Eq. (11) and
found only stable solutions |A|2< 1 for N=4 and o, and
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- RemAt; 1
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FIG. 1. The dispersion relation for a cold-plasma w;, mode
(At;/At,= o and fully implicit differencing: €,=¢,=€;=1)
and test simulation results with At; /At, =S5 for RewAt; and the
amplification factor |A|*= |exp(—iwAt;)|* vs w,At;. The solid
and dotted curves indicate analytical theory.

|1l decreases with increasing w, At,.

Before continuing on to the other test cases, we com-
ment on a variation of the algorithm. When the electron
fluid number and flux densities at the old time level were
used in Egs. (4) and (5) instead of the same quantities ac-
cumulated from the electron particle data, a stable well-
behaved algorithm results, but discrepancies between the
electron fluid and particle-derived charge and flux densi-
ties grew secularly; and the simulation tests attempting to
confirm electron Landau damping (like those of the next
subsection) failed.

B. Warm-plasma o, mode: electron Landau damping

A good test of the implicit-moment §f algorithm’s ac-
curacy in calculating electron kinetics is the simulation of

Landau damping [18]. For this purpose, we excited w,
modes in a warm plasma at small amplitude by perturb-
ing the initial electron charge density in a single spatial
Fourier mode. The asymptotic formulas for the real and
imaginary parts of the w;, mode frequency in the limit of
cold ions analogous to the electron plasma wave are

Reo~V w}+3kh?, (12)

3 2

=—V7/8 -
Zkﬁv2

Dp

Im exp (13)

Ve

With  simulation  parameters €,=€,=¢€;=0.505,
16Ax X 16Ay, 128X 128 particles of each species,
0, At;=0.058, At;/At,=5, k,Ay=0.4, and 2<w,/
kv, =5, very good agreement between the simulation re-
sults in Fig. 2 and Egs. (12) and (13) was observed.
These results were obtained with the particle electron
number and parallel flux densities n, and j;| used in Egs.
(4) and (5).

C. Ion-temperature-gradient instability

We also have tested the implicit-moment §f algorithm
on simulations of the ion-temperature-gradient instabili-
ty. Two-dimensional kinetic simulations with a fully
nonlinear gyrokinetic ion and drift-kinetic electron algo-
rithm were first reported by Lee and Tang [19]. Cohen
and Williams reported simulations of the same ITG case
with fully nonlinear gyrokinetic ions and subcycled drift-
kinetic electrons using an explicit integration scheme,
and with subcycled, orbit-averaged drift-kinetic electrons
using a semi-implicit integration scheme [11].

In Figs. 3 and 4 we display the results of ITG simula-
tions in a shearless slab using the implicit-moment §f al-
gorithm. Results for isothermal fluid electrons
(pey=n, v?2) are shown in Fig. 3. Drift-kinetic electrons
were used to obtain the results in Fig. 4. The simulation
parameters were L,/L;=4 for each species T,=T,,
p:/L, 0 05, 16Ax X 16Ay, Ax =Ay=p;, B,/B,=0.01,
€,=€6,=€3;=0.65, w, At; =0.933, exp( k4a4y) smoothmg
with a—O 9, wp,At;=4000, m;/m,=1836, Q. /0, =1,
n,=64/Ax?, and At /At,=5. Modes with k —0 and
|k|>107/16Ay were suppressed in the electric potent1a1
In the linear phase for both simulations, the modes with

AR S S e S S B A 0 LS O e e 16

" (@) ] | (0)

.08

RGO)/COh
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..........

. i FIG. 2. The dispersion rela-
: tion for a warm-plasma w, mode
and test simulation results for (a)

20F o
0

40 +

.50

// ] Rew/w, and (b) —Imw/w, vs
, } kyv,/w,. The solid and dotted
B} : curves indicate analytical
NI 1 theory.
Kive/tn



53 IMPLICIT-MOMENT, PARTIALLY LINEARIZED PARTICLE. ..

(]
E 0.05 il
I,
g 0.
E
s 005
o
0 4000 0 4000
Qt
(b)
0.01
=
8
A
x
g o
4000
0 ot

FIG. 3. Ion-temperature-gradient simulation results with an
isothermal fluid electron model using the implicit-moment §f
algorithm. (a) Re, Im, and absolute value of e¢, _,/T, vs Qt,.
(b) Spatially averaged ion cross-field thermal transport rate
(g, ) /e, T, vs Qt.

(ky,k,)=(1,£1)(27/16Ay) exhibited the fastest growth
rates, w/{); = +0.006+i0.0046 compared to the theoret-
ical expectation «/Q;= F0.006+:0.0046. Because
kv, /Q;=0.2>>|w/€Q;|, the influence of electron kinet-
ics on the linear dispersion of the ITG mode in this in-
stance is small.

The results in Figs. 3 and 4 should be compared to Fig.
2 of Lee and Tang [19] and Figs. 5, 6, and 7 of Cohen and
Williams [11]. The cross-field ion thermal transport in
Figs. 3 and 4 are similar, but the fluid electron case has a
higher peak transport rate; and in the kinetic case it sub-
sides more quickly as was observed by Lee and Tang [19].
It should be noted that the nondimensional spatially

Re, Im e¢1-1/Te
<) o
& ° &

0 4000 0 4000
(913 Qt
(b)
_0.008
'_
g
Voo
0 4000
Qt
FIG. 4. Ion-temperature-gradient simulation results with

drift-kinetic electrons using the implicit-moment §f algorithm.
(a) Re, Im, and absolute value of e¢, _, /T, vs £,z. (b) Spatially
averaged ion cross-field thermal transport rate {gq,)/c,T; vs
Q;t.
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averaged ion thermal diffusivity in gyro-Bohm units
(XGBEpgcs /Ln ) is %:X/XGB:(LTLn /P§)<‘Ix >/cs Ti’
where (g, ) is the spatially averaged cross-field ion
thermal transport [20]. For a peak value of transport
(g, ) /¢, T;=0.01, Y=1 for the parameters of these simu-
lations. The §f ion thermal transport rates are approxi-
mately double those in the fully nonlinear simulations.
The saturation mechanism in this system is coherent
mode coupling [19], and the thermal transport at satura-
tion has been found to be sensitive to both spatial
smoothing and the level of background thermal noise.
Therefore, it is important to demonstrate convergence of
the results. The saturated thermal transport exhibits a
highly nonlinear, somewhat chaotic time dependence.
We find that the detailed time history of the ion thermal
transport after reaching its first peak depends on the
values of the parameters controlling the spatial smooth-
ing, the time step, and the centering parameters
{€,€5,€5}. However, the time-averaged thermal trans-
port rate at saturation displayed here is reasonably con-
verged ( =25% variations).

As in the simulations of Cohen and Williams [11], the
nonlinear E X B velocity at saturation determines the lim-
iting time step in these simulations, )VEXB|At,» /Ax =0.2.
The largest time step A¢; that we could use with either
kinetic or fluid electrons was the same. We will return to
this point in the next subsection.

D. Collisionless drift instability

Kinetic electron effects are essential to the instability
mechanism in the collisionless drift instability [2,21]. In-
verse electron Landau damping and a density gradient
lead to an instability in an unsheared configuration.
Two-dimensional unsheared simulations of the collision-
less drift instability provide a rigorous test of our kinetic
electron algorithm.

Figures 5, 6, and 7 show results from implicit-moment
6f simulations with T,/T;,=4, p,/L,=0.214,
m;/m,=1837, Q,/0, =10, A,/Ax=1, p,/Ax=4,
B, /B;=0.01, 32Ax X324y, w,,At; =200, and Ax =Ay.
Solutions of the linear dispersion relation are given by
Lee et al. [21] Modes (k,,k,)=(1,£1) in units of 27 /L
are the fastest growing modes with ©/Q;=10.06
+i0.011, which is what is observed in the simulations,
Fig. 5. The earlier simulations of Lee et al. [21] used a
fully nonlinear algorithm for both ions and electrons with
thermal noise levels so high that determination of the
linear growth rates was very difficult. Our simulations
have much lower noise levels.

The nonlinear behavior of our simulations differs from
those of Lee et al. For the simulation shown in Fig. 5,
the radial modes for the electric potential (k, =0, k,70)
and all modes with k, =0 were suppressed; and the mul-
tiscale model without the nonlinear correction suggested
in the work of Lee et al. [3,21] was used. The retention
of the higher-order nonlinear term associated with the
equilibrium spatial gradients can influence the saturation
of the drift-wave instability [22]. In the simulations of
Lee et al. [21], the fastest growing mode reached max-
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FIG. 5. Collisionless drift instability in a 32Ax X32Ay sys-
tem with no radial modes. (a) Re, Im, and absolute value of
ed, /T, vs Q;t. (b) Power spectrum for the (1, —1) mode. (c)
Contour plots of electron density perturbation and ed(x,y)/T,
at the end of the simulation.
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FIG. 6. Collisionless drift instability in a 32Ax X32Ay sys-
tem with radial modes. (a) Re, Im, and absolute value of
ed,1/T, vs Q;t. (b) Power spectrum for the (1,1) mode. (c)
Contour plots of electron density perturbation and e¢(x,y)/T,
at the end of the simulation.
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FIG. 7. Collisionless drift instability in a 64Ax X 64Ay sys-
tem with radial modes. (a) Re, Im, and absolute value of
ed,,/T, vs Q;t. (b) Power spectrum for the (2,2) mode. (c)
Contour plots of electron density perturbation and e¢(x,y)/T,
at the end of the simulation.

imum amplitudes |e¢ /T,|~1%, while the amplitudes in
our simulations peaked at amplitudes approaching
mixing-length amplitudes, |e¢/T,|=0.1-0.2, and then
subsided. The mixing-length estimate of the saturation of
the fastest growing modes gives |e¢/T,|=1/k, L, ~0.25
for the parameters of this simulation.

In Fig. 6 we show results from a simulation of a col-
lisionless drift instability with the same physical parame-
ters as in Fig. 5, but with the radial modes (k,O0,
k,=0) included. The inclusion of radial modes allows
the nonlinear generation of sheared EXB flow via non-
linear convective steepening that can have a profound
stabilizing effect on drift-wave instabilities when the
spread in the Doppler-shifted mode frequency over the
mode width in x is comparable to or greater than the
mode growth rate [20,23]. With radial modes in the
simulation, Fig. 6 indicates the fastest growing modes
peaked at |e¢/T,| ~0.05 and subsided to 0.01-0.02 am-
plitude. This system evolves in a relatively coherent
manner, the fastest-growing modes peaking in amplitude
and then relaxing substantially as long-wavelength radial
modes grow nonlinearly to a significant amplitude
lSne(x)/nO\zO.IS and produce a substantial sheared
flow.

A more turbulent saturated state arises when the sys-
tem size is increased to 64Ax X 64Ay in Fig. 7. The mode
with the same wave number in the bigger system as the
fastest growing mode in the smaller system exhibited the
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same growth rate and frequency, and saturated at
le¢/T,| ~0.01-0.02 with radial modes included without
the overshoot and relaxation observed in the smaller sys-
tem. Fig. 6. The sheared flow generated has even larger
amplitude lSne /ng | =~0.5 and a more turbulent structure
in space. There are significant nonlinear frequency shifts
observed in the power spectra and a loss of coherence ac-
companying saturation.

We studied the convergence of the drift-wave simula-
tion of the larger, more turbulent system with respect to
particle number, time step, and the ratio At;/At,. We
kept the number of electrons and singly charged ions
equal to one another in all cases; however, this could be
varied as well. For the 64Ax X 64Ay collisionless drift-
wave case, we were able to reduce the number of simula-
tion particles to n,=4/A% and obtain consistent results
with good signal-to-noise properties. Lee et al. [21] used
ny=16/A% in their nonperturbative simulations with
much inferior signal-to-noise ratio in their results. The
largest field-solve time step that we found acceptable for
this case was w,,At; =400 [w,At;=0.933, O,;AT;=2.2,
(B, /By)v,At; /Ax =3.74] and was limited by the particle
Courant condition for the EXB velocity, vgxgAt;/
Ax =0.2. The largest time step that we could use for ei-
ther a fluid or kinetic electron model was the same. Lee
et al. quote a time step of w,, At =200 for this case. Our
simulation results were essentially the same for
N=At;/At,=2, 5, or 10 and w,, At;=400. We attribute
the insensitivity of the simulation results to the electron
subcycling parameter At;/At, to the relatively small
value of At; set by the nonlinearity here and because only
(p.) is orbit averaged. From the perspective of compu-
tational cost, the simulation with N =2 is the most
efficient.

IV. DISCUSSION

In this paper we have introduced an algorithm for
efficient simulation of collective phenomena in a plasma
where both ion and electron kinetics are retained. We
specialized to a strongly magnetized plasma with gyrok-
inetic ions and drift-kinetic electrons. We performed a
simple analysis of the dispersion characteristics of the
highest-frequency normal mode for a finite time step and
confirmed the analysis with simulations. We also verified
that the algorithm correctly recovers electron Landau
damping and the linear dispersion relations for simple
limits of the ion temperature gradient and collisionless
drift instabilities in a two-dimensional, unsheared slab.

The ITG and collisionless drift-wave simulations were
compared to earlier reported work with a nonperturba-
tive, fully nonlinear kinetic algorithm and found to have
superior signal-to-noise properties. The nonlinear evolu-
tion of these simulations exhibited a transition from rela-
tively coherent mode coupling-phenomena [21,22] when
the spatial resolution is relatively sparse, to more tur-
bulent nonlinear saturations when the system size was in-
creased with the cell size held constant so that the num-
ber of modes was substantially increased (X4). As in
other slab simulations of ITG and collisionless drift-wave
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instabilities, the saturated states in our simulations
showed significant nonlinear frequency shifts, turbulent
E X B trapping, and self-generated shear flows that were
strongly stabilizing when radial modes were allowed.

We find that the improvement in simulation efficiency
in our two-dimensional ITG and collisionless drift insta-
bility computations is dependent on the specific physics
application. The use of the §f method leads to a substan-
tial reduction in the particle requirement. We were rou-
tinely able to use substantially fewer particles than in ful-
ly nonlinear, nonperturbative simulations (e.g., 4 the
number of particles), while achieving much quieter simu-
lations (the actual reduction in particles for comparable
signal to noise would have been much larger). The simu-
lation costs of the implicit-moment §f method are divid-
ed as follows. The drift-kinetic particle push with one
electron moment accumulated is ~1 of the gyrokinetic
particle push with one accumulation. The implicit-
moment algorithm requires two additional electron mo-
ments accumulated on each time step, which is optimized
on a vector computer using a method much like that of
Heron and Adam [24] and adds another ~50% to the
cost of the electron push. Thus, in the particle-
dominated case with subcycling parameter N =5, the in-
clusion of drift-kinetic electrons increases the calculation
cost to 250% of the cost with adiabatic fluid electrons. If
the §f reduction in particle number is so profound that
the simulation is no longer particle dominated, then the
field solve becomes more important in the computational
cost inventory, and the inclusion of drift-kinetic electrons
increases the total cost by less than quoted in the preced-
ing. We note that in the collisionless drift-wave simula-
tions, the inclusion of drift-kinetic electrons with N =2
and realistic ion-electron mass ratio resulted in an addi-
tional 50-60 % computational cost.

The simulation experience presented here demonstrates
the efficacy of combining multiple time scale and pertur-
bative methods: implicitness, §f, subcycling, gyrokinet-
ics, and drift kinetics. These techniques facilitate simula-
tions of kinetic ion and electron plasmas with realistic
mass ratios and with unprecedented computational
efficiency in our experience. It is our intention to extend
the application of this method to three-dimensional,
toroidal configurations and to include electromagnetic
coupling [17]. Cummings has already successfully
demonstrated the combination of the §f method with
electron subcycling in a two-dimensional slab electromag-
netic model for simulating drift-wave turbulence [25].
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